宇宙学原理还认为,三维空间的均匀各向同性是在任何时刻都保持的。爱因斯坦觉得其中最简单阶情况就是静态宇宙,也就是说,不随时间变化的宇宙。这样的宇宙只要在某一时刻均匀各向同性,就永远保持均匀各向同性。爱因斯坦试图在三维空间均匀各向同性、且不随时间变化的假定下,救解广义相对论的场方程。场方程非常复杂,而且需要知道初始条件(宇宙最初的情况)和边界条件(宇宙边缘处的情况)才能求解。本来,解这样的方程是十分困难的事情,但是爱因斯坦非常聪明,他设想宇宙是有限无边的,没有边自然就不需要边界条件。他又设想宇宙是静态的,现在和过去都一样,初始条件也就不需要了。再加上对称性的限制(要求三维空间均匀各向同性),场方程就变得好解多了。但还是得不出结果。反复思考后,爱因斯坦终于明白了求不出解的原因:广义相对论可以看作万有引力定律的推广,只包含“吸引效应”不包含“排斥效应”。而维持一个不随时间变化的宇宙,必须有排斥效应与吸引效应相平衡才行。这就是说,从广义相对论场方程不可能得出“静态”宇宙。要想得出静态宇宙,必须修改场方程。于是他在方程中增加了一个“排斥项”,叫做宇宙项。这样,爱因斯坦终于计算出了一个静态的、均匀各向同性的、有限无边的宇宙模型。一时间大家非常兴奋,科学终于告诉我们,宇宙是不随时间变化的、是有限无边的。看来,关于宇宙有限还是无限的争论似乎可以画上一个句号了。